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Overview

Relevance/Barriers Addressed

« System weight and volume (A)
» Energy efficiency (C)

» Charging/discharging rates (E)
* Thermal management (J)
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m Plan and Approach

Task 1: (Material identification and properties)
— Develop criteria for storage materials in the metal hydride (MH) and Adsorbent material
categories and identify storage materials in the two categories

Task 2: (System simulation model for metal hydrides)

— Build storage system simulation models for sodium alanate

— Exercise simulation models for system performance

— Calculate performance metrics in relation to DOE targets

— Build detailed 2-D models to include heat transfer and reactions to guide system models

Task 3: (System simulation model for adsorbent system)

— Build storage system simulation models for activated carbon

— Exercise simulation models for system performance

— Calculate performance metrics in relation to DOE targets

— Build 2-D models to include adsorption and heat transfer to guide system models

Task 4: (Pelletization of AX-21 and Sodium Alanate)

— Review of binders and additives for pelletization
— Test various binders and additives for pelletization
— Measure hydrogen uptake, thermal conductivity, and pellet strength

Task 5: (Integration with vehicle system model and fuel cell model)
— Work with NREL, Ford and UTRC for integration of hydrogen storage models in a
common framework

j.:‘l Hydrogen Storage Engineering



Schematic of Sodium Alanate storage system

I <]
— /l\ Outer diameter of the tubes
- Porosity
Fraction of volume of the bed
Q — Mass of Hydride in the bed
&)

Bed Properties values units
Length of the bed 1 m
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Sodium Alanate System

System Details

« Gaseous H, in the free space based + 50 g buffer tank is provided to
on bed porosity handle the slow kinetics of Hex

- Overall heat transfer coefficients is sliizieis Gleempesliir

based on correlation with 2-D » 12 kW catalytic burner for heating
COMSOL model the oil

 Kinetics by Luo and Gross (2004) » 13 kg heating oil is provided within

» Heating fluid is set to 450K for tet the vehicle
phase and at 470K for hex phase » Two storage beds for a full 5 kg
decomposition usable H, system

* Oil heating transients included to « Efficient control system is developed
study cold start up capability of the to handle high transient demands

system
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Control Strategy

Flow to fuel cell

T Foed1™ Feut_off

First bed supplies the H2 to fuel cell and burner

elseif

Foed2 > Feut_off

Second bed supplies the H2 to fuel cell and burner

else
Buffer supplies the H2 to fuel cell and burner

Flow to buffer
J Pbedl > IDBuffer
First bed supplies the H2 to buffer

elseif

F)bed 27 PBuffer
Second bed supplies the H2 to buffer

else
No bed supplies to buffer

j.:‘l Hydrogen Storage Engineering



» Obtained key information from 2-D

COMSOL refueling model

- bed design

- overall heat transfer coefficient defined
below

- state of the bed after 10.5 min of refueling

Refueling (2-D COMSOL Model)

Contours at 630 seconds s D031

0.0317

0.0299
0028
0.0262

0.0243

* Initial state of the system based on

10.5 min refueling time

1 1 I‘eff.

= —+ ,
et 7t K
ur is fin efficiency

0.0225

0.0206

0.0138

00169

0.0151

Leff IS characteristic bed length

/e Leff are evaluated from 2D COMSOL model

0.0132

Weight fraction of H, in the bed .00

Average weight fraction
in the bed is 0.305
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Integration in the Framework

Top-level vehicle model

Hydrogen Storage Engineering Center of Excellence Protected Data
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Drive Cycle Simulation (HWY)

(0.151qg/s average fuel consumption)

Temperature (K) flow rate to burner
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Cryoadsorption System
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Cryoadsorption System

« System model based on mass balance, energy balance, and adsorption
equilibrium

 Heat needs to be added during discharge to avoid very low tank
temperatures and discharge most of the hydrogen.

« Various heat addition rate schemes investigated
— Varying heat input proportional to the hydrogen demand by the fuel cell

— Constant heat input proportional to the average hydrogen demand over the drive cycle

» Heat could be added into the tank by heating a part of the recirculating gas

or by an electric heater.
— Since the gas is in intimate contact with the bed, first mode of heating could be efficient

— The electric heater, though less efficient, might be beneficial in terms of gravimetric /
volumetric capacities of the system, since there are no auxiliary components

_Il". Hydrogen Storage Engineering
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m AX-21: FTP-75, 0.36 kW Constant Heating Rate
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m AX-21: US-06, 1.13 kW Constant Heating Rate
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AX-21 bed: Repeated US-06 cycles
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Preliminary Gravimetric and Volumetric Densities

for sodium alanate system

Number of beds 2
Deliverable hydrogen 4.85
Total length of the bed 1292.0
Diameter of the bed (inner) 416.0
Diameter of the bed (outer) 436.9
Shell material Composite carbon
Weight of 2 vessels including liner 61.4
Total Weight of alanate 202.00
Weight of tubes and fins 143.10
Accessories (manifolds, end plates etc.) 20
Pump/HEX/burner 8.00
Other BOP components 7
Oil mass 13.00
Buffer 5.05
Buffer volume liters 11.30
Total volume of the beds 387.5
Total system volume liters 407.8

Total system mass kg 459.50
Gravimetric density 0.0105
Volumetric density 0.0119

Vessel thickness and materials estimates by Lincoln Composites

(1) Hysrogen Storage Enpineering
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Preliminary Gravimetric and Volumetric Densities
for Activated Carbon system

System Temp & Pressure
Final pressure
Adsorbent volume (L)
otal usable H2
Adsorbent mass (kg)
Total inner volume (L)
Cylinder L (cm)
Hemispheres D (cm)

INNER VESSEL & OUTER VESSEL Material
Inner vessel Mass

QOuter vessel mass (kg)
Insulation mass (kg) — MLVSI (17 thick)
BOP components (kg)

77 K, 35 bars
4 bar
265.5
o kg
75.3
307.4

104
23

Aluminum 6061
475

12.4
12
15

162.2
0.0308

398.3
0.0126

[11) Wydrogen Storago Engineering
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NaAlH, Comments AX-21 Comments 2010 2015 ultimate
: : Gravimetric (Kg Ho/Kg composite vessel, Inner and outer
t . . . . K 0.045 0.055 0.075
Gravimetric Density system) | 0-0105 | "o minum HEX 0.0308 vessels aluminum
IRRIRTTE . o1.imctric Density|(Kg Haiter)|  0-0049"  FEX significant Vol Susysiess MLVI btwn vessels | 0.028 0.040 0.070
and wt fraction
System Cost GO 4 2 TBD
Cost net)
Fuel Cost ($/gge) 133 67 TBD
Minimum with buffer and
Operating (°C) -30 void-space H2, -30 not an issue -30 -40 -40
Temperature seems OK
Maximum
Operating (°C) 50 can be done 50 if enough insulation 50 60 60
Temperature
QA::T']E;!\:SZ (°C) -40 Not a problem -40 not an issue -40 -40 -40
Max Delivery H2 cooled in the .
Durability/ Temperature 0 85 tank to FC delivery 85 not an issue 85 85 85
Operabilit i
P Y (?/yf'_efbl'lf)e (N) NA NA 1000 1500 1500
Cycle Lif
(90%32:(;2fidleence) (0 L) NA NA 90 99 99
Prel\g;TJ.reD?lg\I/Eel\/rllll:C) (bar) 4 Not a problem 4 Not & problem 4 3 ’
P'\r/grs"ssg'zgé) (bar) ? Could be an issue ? Could be an issue 35 35 35
pax. Delvel | (bar) 12 OK i OK-FC, issue for ICE| 12/100 | 12/100 | 12/100
On Board 41 kJ/mole, 90%
ey (%) 75% eff burner, heat 95% 6 kJ/mole + mCpAT 90% 90% 90%
media
g:gsé?ﬂzg‘r’:’g %) NA NA 90% 90% 60%
Fill Time (5Kg Hz) |  (min.) 10.5 min 4.2 min Cold H2 4.2 3.3 2.5
Minimum Full Flow H2(g) in buffer and .
Rate ([9/sVKW) 0.02 void-space 0.02 H2 in gas-phase 0.02 0.02 0.02
Start Time to Full H2(g) in buffer and .
Charge/ F|OV\II (ZOOC)U (sec,) 5 (%Z)id-space <5 H2 in gas-phase 5 B 5
Discharge Rates - ;
Start Time to Full H2(g) in buffer and .
Flow (-20°C) (sec,) 15 void-space <15 H2 in gas-phase 15 15 15
Transient H2(g) available, H2(g) available,
Response (sec,) CIE mech/elect issue s mech/elect issue 0.75 0.75 0.75
Fuel Purity Fuel Purity (%) 99.99% 99.99% 99.99%
19



Media Structuring Studies

Hydrogen storage media are generally characterized by low
density and low thermal conductivity leading to low gravimetric
and volumetric energy densities

Motivation : To engineer compaction of the storage media for
sincreased density

sincreased thermal conductivity, and

~easier handling, while

*maintaining hydrogen absorption/adsorption capacity, and
kinetics

_Il". Hydrogen Storage Engineering
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m AX-21 Pelletization Data — Surface area and density

Adsorbent surface area is a good indicator
of its hydrogen adsorption capacity

AX-21

072809a

080309a

092809a

080409c

081109a

090109a

PVDF-HSV900- 5 wt%

PVDF-HSV900 - 5 wt%

PVDF-HSV900 - 5 wt%

PVDF-301F - 5 wt%

PVDF-301F - 5 wt%

PVA solution - 5 wt%

_Il-‘; Hydirogien Storage Engineering
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0.64

3070

2078

1744
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1880

1622

2012

1.39

0.92
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AX-21 Pellets
Gravimetric and Volumetric Capacity at 77 K

Gravimetric adsorption Volumetric adsorption
30
E =
£ - g
5 =
z s
c =
=]
. | Y
I S
L
g 3 | ?
® %
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L < o 0803092 —8-080409¢
& = 5
e I
§ 1 0803092 ~#-080409c 3 =901 09 powder
w ! —+—090109a ——powder 2 0
0 w o 20 40
0 20 40 80

Pressure (bar)
Pressure (bar)

Pellets have a lower gravimetric but higher volumetric adsorption
capacity than the original graphite AX-21 powder.

1) Storage Engineeri
£4)) Hydrogen Storage I"-::_I "
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m Sodium alanate: Hydrogen Uptake — Various Temps

6.35mm EPDM Coated Pellets

:,y Hydragen Storage Eng

L TEH F L

6.35mm Uncoated Pellets
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Sodium alanate pellets
Thermal conductivity (W/m°K)

Therr?::lizrlig:::tigv.ist;;n :‘?:I.:j?:;nents Die I(>|;¢:is)sure Uncoated Pellets| One coat Three coats
Alanate with excess aluminum 50,000 9.6 9.43 9.44
+ 5 mol% expanded graphite | High-energy mixing 50,000 5.74 5.93 6.74
+ 5 mol% graphite flakes High-energy mixing 50,000 5.95 7.10 7.28
+ 5 mol% expanded graphite | Low-energy mixing 50,000 8.56 - -
+ 5 mol% graphite flakes Low-energy mixing 50,000 8.86 - -
+ 5 mol% expanded graphite | Low-energy mixing 10,000 2.98 - -
+ 5 mol% graphite flakes Low-energy mixing 10,000 3.26 - -

._Il-‘; I*hd.ruuf!n .‘ilnml_fr! Enginearing 24



Summary

1. Systems designed and Simulink models built for sodium alanate and AX-21
systems
2. Both system models integrated within the Simulink framework and system
simulations performed for various operating conditions and drive cycles
3. For the adsorbent system,
* H,in the adsorbed phase responds to the steady demand while the
gas- phase H, responds to demand fluctuations.
« A constant heating rate addressing the heat of desorption for the
average FC demand is sufficient during the discharge cycle.
« An electrical heater may offer advantages because of its simplicity

AX-21 Pellets Sodium alanate Pellets

- Gravimetric hydrogen uptake » Coatings diminish pellet damage

decreases, but the volumetric capacity ° H2 uptake capacity not affected by

increases in comparison with powder the coating o
» Thermal conductivity depends on the

pressing pressure but the coating
does not hinder thermal conductivity

* Modifications needed in the
pelletization process

j‘j .Wﬂfﬂ:llflﬂl-ﬂlnm?e Englm-zl.!dnq 25



Collaborations

« UTRC, NREL, Ford — system modeling and development
of integrated framework

 SRNL — Detailed COMSOL models including heat and
mass-transfer, reaction kinetics, and flows in systems

« UTRC, Ford, UQTR — Media compaction studies

« JPL, UQTR, SRNL — System architecture for prototype
systems

* OSU - micro-channel heat exchangers and catalytic
burner

26
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Proposed Future Work

1. Evaluate metal hydride and adsorbent systems for additional drive
cycles and operating conditions

2. Test system performance at extreme temperatures and sensitivity
studies for various parameters

3. Adapt and improve system model for next metal hydride candidate

4. Cryoadsorbent system models and performance metrics for higher
pressures

5. Refueling strategies for cryoadsorbent systems
6. Examine kinetics, mechanical stability and thermal conductivity
dependence on pellet diameter and binder/coating material

7. Improve pelletization techniques to make pellets faster with no or
minimal adverse impact on hydrogen uptake capacity and kinetics

27
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Supplementary Slides
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US-06 Cycle: Hydrogen Demand

)
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The US-06 cycle is a shorter
but more aggressive cycle
than FTP-75

It consumes 212.54 g of H,
in 601 s, for an average
demand of 0.354 g/s.

« AX-21: For AH of 3.2x10° J/kg, and 0.354x10-3 kg/s average discharge
rate, the heating rate = 3.2x0.354 kW = 1.13 kW

J}. Hydrogen Storage Engineering
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Sodium Alanate Pelletization

* Presses easily into pellet, no addition of binder required to
maintain pellet integrity. However, binder coating slows
oxidation in air.

« EPDM dissolved in solvent. Pellets dipped into solutions and
allowed to dry between coatings

« Average binder wt < 1% for each coating of 70:4 EPDM
« EPDM = Ethylene Propylene Diene Monomer (M-class) rubber

o Ethylene content = 45 — 75% , Diene content = 2.5 — 12wt%
(provides resistance to tackiness), EPDM mixtures — 70:4,
50:4, 50:8 & 60:4.

_Il-‘; I*hldruuf!n ﬁll‘ll?ll_il.l! Engineering 30
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